Three-dimensional lattice Boltzmann BGK model and its application to flows with heat transfer in a rectangular microchannel
نویسندگان
چکیده
In this paper, we present a 3D lattice Boltzmann BGK model for simulation of micro ows with heat transfer. This model is an extension of the two-dimensional model that is based on the kinetic theory and the thermal lattice Boltzmann method. The kinetic relations of the relaxation times in this model were linked with the Knudsen number, and a di use scattering boundary condition for the velocity and thermal elds was presented for the 3D lattice Boltzmann method. The present 3D lattice Boltzmann model was successfully applied to simulate the ow and heat transfer in rectangular channels using the 3D TLLBM developed by the authors. Numerical results obtained by the present method show that the LBM can give a good prediction of the micro uidic behaviours with thermal e ects. Copyright ? 2005 John Wiley & Sons, Ltd.
منابع مشابه
Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
متن کاملHeat Transfer Enhancement of Al2O3–H2O Nanofluid Free Convection in Two-Phase Flow with Internal Heat Generation Using Two Dimensional Lattice Boltzmann Method
A two-phase lattice Boltzmann model considering the interaction forces of nanofluid has been developed in this paper. It is applied to investigate the flow and natural convection heat transfer of Al2O3–H2O nanofluid in an enclosure containing internal heat generation. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann metho...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کامل